Computational High-frequency Wave Propagation Using the Level Set Method, with Applications to the Semi-classical Limit of Schrödinger Equations∗
نویسندگان
چکیده
We introduce a level set method for computational high frequency wave propagation in dispersive media and consider the application to linear Schroödinger equation with high frequency initial data. High frequency asymptotics of dispersive equations often lead to the well-known WKB system where the phase of the plane wave evolves according to a nonlinear Hamilton-Jacobi equation and the intensity is governed by a linear conservation law. From the Hamilton-Jacobi equation, wave fronts with multiple phases are constructed by solving a linear Liouville equation of a vector valued level set function in the phase space. The multi-valued phase itself can be constructed either from an additional linear hyperbolic equation in phase space or an additional linear homogeneous equation and component to the level set function in an augmented phase space. This phase is in fact valid in the entire physical domain, but one of the components of the level set function can be used to restrict it to a wave front of interest. The use of the level set method in this numerical approach provides an Eulerian framework that automatically resolves the multi-valued wave fronts and phase from the superposition of solutions of the equations in phase space.
منابع مشابه
Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method
Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...
متن کاملWave Propagation in Sandwich Panel with Auxetic Core
Auxetic cellular solids in the forms of honeycombs and foams have great potential in a diverse range of applications, including as core material in curved sandwich panel composite components, radome applications, directional pass band filters, adaptive and deployable structures, filters and sieves, seat cushion material, energy absorption components, viscoelastic damping materials and fastening...
متن کاملParallel implementation of underwater acoustic wave propagation using beamtracing method on graphical processing unit
The mathematical modeling of the acoustic wave propagation in seawater is the basis for realizing goals such as, underwater communication, seabed mapping, advanced fishing, oil and gas exploration, marine meteorology, positioning and explore the unknown targets within the water. However, due to the existence of various physical phenomena in the water environment and the various conditions gover...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملMulti-Valued Solution and Level Set Methods in Computational High Frequency Wave Propagation
We review the level set methods for computing multi-valued solutions to a class of nonlinear first order partial differential equations, including Hamilton-Jacobi equations, quasi-linear hyperbolic equations, and conservative transport equations with multi-valued transport speeds. The multivalued solutions are embedded as the zeros of a set of scalar functions that solve the initial value probl...
متن کامل